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Streptococcal mimicry and antibody-mediated cell signaling
in the pathogenesis of Sydenham’s chorea
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Health, Bethesda, MD, USA, 3Department of Pediatrics, University of Hawaii, Honolulu, HI, USA, and 4Department of
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Abstract
Recent evidence suggests that the pathogenesis of Sydenham’s chorea following group A streptococcal infection is due to
antibodies which develop due to the infection and infiltrate the brain and basal ganglia. Antibodies present in acute chorea
react with the surface of neuronal cells and signal the induction of calcium calmodulin dependent protein kinase II with
elevation of tyrosine hydroxylase and subsequent dopamine release which may lead to the movement disorder. The antibodies
present in disease recognize lysoganglioside and the group A streptococcal epitope, N-acetyl-glucosamine. Monoclonal
antibodies (mAbs) from Sydenham’s chorea demonstrated the mimicry between lysoganglioside and the group A
streptococcal carbohydrate epitope. A group of antibodies present in pediatric autoimmune neuropsychiatric disorders
(PANDAS) were similar but not identical to the antibodies observed in chorea.

Keywords: Streptococci, autoimmunity, rheumatic fever, chorea

Introduction

Group A streptococcus (Streptococcus pyogenes) is

specifically associated with the development of post-

infectious autoimmune responses in humans. The

best studied of these responses is acute rheumatic

fever (ARF), a delayed sequela of streptococcal

pharyngitis, which produces significant morbidity

and mortality in children worldwide. ARF represents

a collection of inflammatory disorders in which

immune activation by streptococcal antigens appears

to initiate events resulting in inflammatory and

autoimmune responses against the heart (carditis),

joint (arthritis), skin (erythema marginatum and

subcutaneous nodules) and/or brain (Sydenham’s

chorea) that produce the characteristic symptoms of

ARF in susceptible individuals [1]. Since the mid-

1980s there has been an unexplained resurgence in the

number of reported ARF cases in the US and ARF
continues unabated in developing nations [2,3]. While

the last 50 years have seen striking advances

elucidating the molecular mechanisms of pathogenesis
in rheumatic carditis, information has only recently

been forthcoming concerning the postinfectious
mechanisms of streptococcal–induced central ner-

vous system (CNS) dysfunction [4–9].

Sydenham’s chorea is the neurologic manifestation
of ARF. This confounding disorder is characterized by

involuntary movements and neuropsychiatric disturb-
ances, including obsessive-compulsive symptoms,

hypersensitivity, and emotional lability (for review

[10]). Sydenham’s chorea can develop in 10–30% of
ARF cases and may be the only manifestation of ARF

presenting as late as 6 months after the initiating
streptococcal pharyngitis [11,12]. Diagnosis of

Sydenham’s chorea and ARF are dependent on
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correlation of symptoms with elevated anti-streptoly-

sin O (ASO) or DNase B titers, however, the delayed

onset of Sydenham’s chorea can make diagnosis

difficult.

While several infectious agents have been impli-

cated in the induction or exacerbation of postinfec-

tious autoimmunity, group A streptococci are well

established as inducers of cross-reactive antibodies

through molecular mimicry with host antigens [13–

15]. Such cross-reactive antibodies can be classified

according to their molecular specificity: (1) poly-

reactive antibodies that recognize similar chemical or

conformation structures on distinct streptococcal and

host antigens [16] and (2) multireactive antibodies

that react with dissimilar chemical or conformational

structure such as protein and carbohydrate [7,17–19].

Considerable evidence has shown that crossreactive

immune responses against group A streptococci and

host antigens leads to rheumatic carditis [6,8], and it is

likely that Sydenham’s chorea is mediated by similar

events through production of a cross-reactive humoral

response directed against neuronal determinants in

the brain [14,20]. The basal ganglia is implicated as

one of the primary cortical targets of poststreptococcal

immune responses by clinical observations and

magnetic resonance imaging (MRI) data suggesting

that basal ganglia insults are by antibodies which

contribute to pathology in Sydenham’s chorea

[21,22]. Early characterizations of Sydenham’s chorea

autoantibody responses showed reactivity with neur-

onal antigens in human basal ganglia cross-sections

with anti-neuronal antibody titers associated with

both severity and duration of choreic episodes

[23,24]. Recent studies confirm the presence of

antibodies against basal ganglia in Sydenham’s chorea

[25–28].

Streptococcal surface antigens are implicated in the

generation of cross-reactive immune responses in

ARF. In the early 1980s, monoclonal antibody (mAb)

studies identified two cross-reactive antigens for ARF

that are unique to group A streptococci [13,14,17,29].

The first is the streptococcal M protein, an

antiphagocytic virulence factor that shares sequence

and structural homology with many mammalian

proteins including human cardiac myosin (HCM),

tropomyosin, actin, keratin and laminin [16,29–31].

The second cross-reactive antigen identified was

N-acetyl-b-D-glucosamine (GlcNAc), the immuno-

dominant epitope of the group A carbohydrate (GAC)

[18,19,32]. GlcNAc residues are bound to a rhamnose

polymer backbone by b-1,3 linkages with terminal

GlcNAc moieties recognized by GAC-specific anti-

bodies [33–36]. Both the M protein and GAC have

been implicated in the generation of anti-heart

antibodies that contribute to rheumatic carditis and

it is probable that these antigens induce cross-reactive

immune responses directed against neuronal antigens

in the brain [7,37].

Husby et al. were the first to characterize CNS

reactivity of Sydenham’s chorea antibodies [24].

Recognition of cytoplasmic antigens in fixed human

caudate and subthalamic nuclei cross-sections by

Sydenham’s chorea sera antibodies was absorbed with

membranes of rheumatogenic streptococcal strain M

type 6, indicating that bacterial cell wall components

may evoke cross-reactive anti-neuronal antibodies. To

elucidate the role of streptococcal antigens in

Sydenham’s chorea, Bronze and Dale demonstrated

that immunization of experimental animals with M

protein of rheumatogenic serotypes induced cross-

reactive antibodies capable of recognizing multiple

proteins from human brain [23]. Conserved epitopes

contained in A and B repeat regions of the M protein

could inhibit M protein antisera recognition of human

brain antigens, however, the neuronal antigens were

not identified. These pioneering studies were the first

to clearly link streptococcal antigens to the develop-

ment of a cross-reactive antibody response in

Sydenham’s chorea. Studies in our laboratory revealed

that recognition of the extracellular digestion fragment

of type 5 streptococcal M protein (pepM5) by

Sydenham’s chorea serum antibodies was associated

with the symptomatic phase of the disorder. Acute

Sydenham’s chorea sera showed significantly greater

reactivity to pepM5 than did matched patient

convalescent sera, indicating that elevated levels of

M protein-specific antibodies were present during

illness and decreased with diminishing severity of

symptoms (Figure 1). Although, the data suggest

antibodies directed against the streptococcal M

protein are associated with Sydenham’s chorea, the

exact role and cross-reactivity of anti-M protein

antibodies requires further study. In the future,

mAbs against the M protein and brain may be able

to clarify this issue.

Determination of cross-reactive specificities

between streptococcal and neuronal antigens is

complicated by the polyclonal antibody response in

Sydenham’s chorea. Recently, mAbs derived from a

Sydenham’s chorea patient were employed to uncover

the identity of cross-reactive antigens [38]. When

tested against a panel of streptococcal and mammalian

antigens, chorea mAbs demonstrated significant

reactivity with only the GlcNAc epitope (Figure 2).

Chorea mAbs showed no recognition of the M protein

from rheumatogenic serotypes 5 and 6 and demon-

strated minimal reactivity for cardiac antigens in direct

contrast to human GlcNAc-specific mAbs from

rheumatic carditis that were strongly cross-reactive

with HCM and laminin [6]. Interestingly, the chorea

mAbs showed no reactivity to keratin, which is a

pronounced characteristic of human anti-GlcNAc

antibodies against epitopes in the skin [18,19].

GlcNAc is capable of generating strong humoral

responses during active streptococcal infection and in

post-infectious sequela [39,40]. It has been suggested

C. A. Kirvan et al.22
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that terminal O-linked GlcNAc residues may be

important in the induction of cross-reactive antibodies

due to its structural similarity to many host

glycoconjugates. Antibodies specific for the GAC

were found capable of recognizing a variety of host

tissues and studies with human and murine anti-

GlcNAc mAbs demonstrate specific cross-reactivity

with mammalian proteins [7,19,41]. Immunization of

experimental animals with GlcNAc gives rise to T cell-

dependent antibody responses to cytoskeletal pro-

teins, particularly keratin and cardiac myosin [17,42].

ARF patients with valvular heart disease were shown

to have persistently high levels of antibodies to the

streptococcal carbohydrate [40]. Elevated levels of

GAC-specific antibodies have been demonstrated in

Sydenham’s chorea patients [40,43]. Recently, we

have observed that acute sera from patients with

Sydenham’s chorea showed significantly elevated

titers to GlcNAc that decreased with the abatement

of symptoms. These data indicate that antibodies

directed against GlcNAc and the GAC may play an

important role in mediating the clinical symptoms and

immunopathogenesis of Sydenham’s chorea.

Sydenham’s chorea mAbs specific for GlcNAc were

found to cross-react with mammalian gangliosides

[38]. Gangliosides are a diverse family of glycolipids

that show specific developmental and differential

Figure 1. M protein-specific antibody in Sydenham’s chorea. Serial dilutions of matched Sydenham’s chorea acute (B) and convalescent (A)

sera show significantly elevated levels of pep M5-specific IgG are associated with the symptomatic phase of illness in four separate Sydenham’s

chorea patients. Each graph represents matched acute and convalescent sera from an individual patient.

Figure 2. Reactivity of chorea mAbs with streptococcal and

mammalian autoantigens. Chorea mAbs showed significant

reactivity ( p , 0.05) with the immunodominant carbohydrate

epitope (GlcNAc) of group A streptococcus in comparison to

other antigens tested by two-tailed t test. The chorea mAbs did not

bind to either the fragment of streptococcal M protein (pepM5) or

full length recombinant streptococcal M6 protein (rM6). Chorea

mAb reactivity was significantly greater with the GAC than with

dsDNA, collagen, actin, skeletal myosin, tropomyosin and laminin.

Chorea mAbs also failed to recognize HCM, which is characteristic

of mAbs produced from patients with rheumatic carditis, nor did

chorea mAbs strongly react with keratin which characterizes

GlcNAc-specific mAbs reactive with skin.

Antibody signaling and mimicry 23
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expression within the brain and contribute to multiple

functions mediated at the cell surface, including

signal transduction [44,45]. Mimicry between ganglio-

sides and the GlcNAc epitope has been classified as

“dissimilar” as defined previously in studies of mimicry

between GlcNAc and peptide structures [17–19].

Identification of cross-reactive antibodies, which

recognize dissimilar epitopes is not limited to ARF.

Investigation of cross-reactive antibody responses in

the neuropyschiatric disorders of systemic lupus

erythematosus (SLE) demonstrated that a DNA-

specific mAb also recognized subunits of the

N-methyl-D aspartate (NMDA) receptor in the

hippocampus [46].

Competitive inhibition studies with GlcNAc

revealed that Sydenham’s chorea mAbs were strongly

cross-reactive with lysoganglioside GM1, a CNS

ganglioside shown to influence neuronal signal

transduction [38,44]. Increased levels of anti-lyso-

ganglioside GM1 antibodies correlated with active

chorea. Significantly higher anti-lysoganglioside GM1

antibody concentrations were also found in Syden-

ham’s chorea acute sera but not in matched

convalescent sera or sera from patients with acute

ARF without Sydenham’s chorea. Acute Sydenham’s

chorea cerebrospinal fluid (CSF) samples were found

to have elevated levels of anti-lysoganglioside GM1

IgG in comparison to control CSF, indicating that

lysoganglioside GM1-specific antibodies were present

in the CNS during active disease. Lysoganglioside

GM1 was also found to block Sydenham’s chorea mAb

and acute sera binding to human caudate-putamen

tissue indicating that it is potent and specific inhibitor

of Sydenham’s chorea antibody reactivity to human

brain tissue.

Recognition of neuronal cell surface determinants

by chorea mAbs and sera suggested that Sydenham’s

chorea antibody binding might alter neuronal cell

function. Previous reports have suggested that anti-

ganglioside antibodies affect the physiologic homeo-

stasis of neuronal cells through alteration of signal

transduction pathways in neuroblastoma cells [47,48].

Sydenham’s chorea mAbs and sera were shown to

trigger calcium/calmodulin-dependent protein (CaM)

kinase II activation in the catecholamine-secreting

neuroblastoma cell line SK-N-SH [38]. Antibody-

induced CaM kinase II activation appeared to be due

to specific antibody induction (Figure 3) and not

due to a general influx of calcium ions as chorea

antibodies did not significantly activate protein kinase

C or cAMP-dependent protein kinase above control

levels (data not shown). CaM kinase II is a multi-

functional protein kinase with a broad spectrum of

neuronal targets and was of particular interest due to

its functions in the CNS that influence behavior and

neurotransmitter synthesis and release [49–52].

Antibody-mediated CaM kinase II activation was

induced by Sydenham’s chorea acute, but not

convalescent sera, suggesting that increased CaM

kinase II activity is associated with the active disease

state (Figure 3). Intrathecal antibody from Syden-

ham’s chorea CSF directed significant levels of CaM

kinase II activation demonstrating that alteration of

signal transduction events was present in the CNS

(Figure 3). Pathogenic antibodies in Sydenham’s

chorea may directly bind to gangliosides or indirectly

cause aggregation of neuronal receptors by binding to

gangliosides, which trigger a signal transduction

cascade.

The ability of chorea antibodies to induce CaM

kinase II activity directly correlated with avidity for

lysoganglioside GM1. Of the Sydenham’s chorea mAbs

tested, only chorea mAb 24.3.1, which demonstrated

the highest avidity for lysoganglioside GM1, was

capable of mediating CaM kinase II activation.

Antibody recognition of cell surface gangliosides

other than lysoganglioside GM1 did not activate

CaM kinase II suggesting that strong cell surface

binding alone or binding of gangliosides in general

does not induce CaM kinase II. Antibody from acute

Sydenham’s chorea sera and CSF were shown to have

higher avidity and/or concentration in comparison to

matched convalescent samples. Lower CaM kinase II

activation was induced by sera from active ARF

without Sydenham’s chorea and acute streptococcal

pharyngitis, which have significantly lower levels of

anti-lysoganglioside GM1 antibodies indicating that a

threshold concentration of specific antibody may be

required for induction of cell signaling. The higher

avidity of Sydenham’s chorea mAb 24.3.1 for

lysoganglioside GM1 and higher levels of anti-

lysoganglioside GM1 antibody present in Sydenham’s

chorea acute sera and CSF suggests that anti-

lysoganglioside GM1 antibody avidity, specificity,

and/or concentration may trigger cell signaling events.

Figure 3. Induction of CaM kinase by Sydenham’s chorea sera and

CSF. Acute sera from Sydenham’s chorea significantly ( p , 0.05)

activated CaM kinase II. Matched convalescent serum induced

significantly lower levels of enzyme activity that found in acute sera

The range for NHS induction of CaM kinase II was 98–116% of the

basal rate. Sydenham’s chorea CSF induced CaM kinase II while

control CSF did not.

C. A. Kirvan et al.24
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Anti-ganglioside antibodies have been reported to

contribute to other neurologic disorders. Guillian-

Barre syndrome is a post-infectious, antibody-

mediated neurological disorder thought to be initiated

through molecular mimicry between Campylobacter

jejuni lipopolysaccharide and monosialoganlioside

GM1 [53]. Cross-reactive antibodies direct comp-

lement-mediated cytotoxicity at the motor nerve

terminal which may contribute to the loss of motor

function associated with Guillian-Barre syndrome

[54–56]. Localization of Sydenham’s chorea sera

antibodies to the neuronal cell membrane indicated

the potential of antibody-induced, complement-

mediated cytotoxicity. Acute Sydenham’s chorea sera

and CSF were assessed for cytotoxic potential by
51Cr-release assay. Complement-dependent killing of

human neuronal cell did not appear to be a major

mechanism of pathogenesis (Table I). Additional

studies revealed that Sydenham’s chorea mAbs were

also found to lack the ability to direct complement-

mediated cytotoxicity. The non-destructive nature of

Sydenham’s chorea anti-GlcNAc mAbs is in contrast

to anti-GlcNAc mAb derived from rheumatic carditis

which was capable of directing complement mediated

killing of endothelial cells, suggesting that there are

different populations of anti-GlcNAc antibodies in

ARF [7]. The inability of Sydenham’s chorea

antibodies to direct complement-mediated lysis sup-

ports the hypothesis that antibodies which change the

physiology of the brain, rather than cytotoxic

antibodies, contribute to the disorder. While MRI

studies of Sydenham’s chorea patients showed

enlargement of the basal ganglia, evidence of physical

damage, including lesions, to the brain has rarely been

demonstrated [22,57]. The lack of Sydenham’s chorea

antibody cytotoxicity also complements plasma

exchange studies which show rapid reversal in the

clinical course of Sydenham’s chorea patients with the

removal of serum antibody [58].

It is unclear how antibodies mediate neurologic

dysfunction in Sydenham’s chorea. Clinical data

suggests that antibodies in Sydenham’s chorea, such

as mAb 24.3.1, promote signal transduction that may

lead to the release of excitatory neurotransmitters. It is

of interest and importance in Sydenham’s chorea that

CaM kinase II activation has recently been associated

with increased dopamine release in neuronal cell lines

and brain slices [59]. Dopamine exocytosis can be

mediated by CaM kinase II phosphorylation of

synapsins, synaptic vesicle proteins that regulate

neurotransmitter release [60–62]. In our studies,

preliminary data shows that Sydenham’s chorea mAb

24.3.1 elicited 3H-dopamine release from SK-N-SH

neuroblastoma cells in contrast to isotype control

(Figure 4(a)). In addition, Sydenham’s chorea acute

sera was capable of evoking significant levels of 3H-

dopamine release in comparison to matched con-

valescent samples and pooled normal human sera

(NHS) (Figure 4(b)). Tyrosine hydroxylase is the rate

limiting enzyme in dopamine synthesis and tyrosine

hydroxylase activity can be increased by CaM kinase II

phosphorylation of the enzyme [63,64]. To determine

if chorea mAbs were capable of stimulating increased

tyrosine hydroxylase synthesis, Sydenham’s chorea

mAb 24.3.1 was passively transferred into rat brain

and the level of tyrosine hydroxylase was determined

by immunohistochemistry. Chorea mAb 24.3.1

induced higher levels of tyrosine hydroxylase in

cerebral neurons than isotype control (Figure 4(c)).

The increase in tyrosine hydroxylase level was seen

only in neurons of the cerebrum and not of the

cerebellum (Figure 4(c), inset). While neurons that

showed an increase in tyrosine hydroxylase level have

not been conclusively identified as part of the basal

ganglia, the data suggest that Sydenham’s chorea

antibodies increase catecholamine synthesis in vivo.

The ability of chorea antibodies to alter neurotrans-

mitter synthesis and release may explain the efficacy of

dopamine receptor blockers such as haloperidol in the

treatment of Sydenham’s chorea [65]. Our recent

studies have led to the development of an antibody-

mediated model of pathogenesis for Sydenham’s

chorea (Figure 5). Chorea antibody binding to the

neuronal cell surface antigen triggers CaM kinase II

activation that leads to an increase in the synthesis and

exocytosis of dopamine through activation of tyrosine

hydroxylase. Elevated levels of dopamine in the

synapse may contribute to the movement and

neuropyschiatric characteristics of Sydenham’s

chorea.

PANDAS

The last decade has witnessed a growing interest in

neurologic disorders which share similar clinical

manifestations with Sydenham’s chorea. Increased

attention has focused on a relatively new subgroup of

childhood onset obsessive-compulsive disorder

(OCD) and tic disorders known as Pediatric

Autoimmune Neuropsychiatric Disorders Associated

with Streptococcal infections (PANDAS). The sub-

group is distinct from other cases of childhood OCD

and tic disorders in that the onset and exacerbation of

neuropsychiatric symptoms is preceded by a Group A

streptococcal infection [66,67]. Sydenham’s chorea

and PANDAS share similar neuropsychiatric symp-

toms and a common infectious etiology has been

proposed for both disorders [68,69]. Anti-neuronal

antibodies have also been demonstrated in PANDAS

raising the possibility that development of clinical

manifestations in Sydenham’s chorea and PANDAS

may be mediated through a similar antibody-directed

mechanism of pathogenesis [70,71]. Recently, we

have shown that PANDAS serum IgG reacted with

the GlcNAc epitope of the streptococcal GAC and

lysoganglioside GM1 as in Sydenham’s chorea [72].

Antibody signaling and mimicry 25
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Figure 4. (a) Sydenham’s chorea mAb 24.3.1 induced a higher percentage release of 3H-dopamine from SK-N-SH cells that isotype control.

SK-N-SH cells were plated at 1 £ 106 cells/well. For radioactive dopamine uptake, cells were incubated with 3H-dopamine for 90 min in

modified Kreb’s ringer buffer with 1 uM doperidone, 10 uM nomifensine, 100 nM nisoxetine, 100 nM fluoxetine, 0.1 mM ascorbic acid,

2 mM CaCl2, 3 mM KCl and 0.2 mM MgCl2 under standard tissue culture conditions. Cells were then thoroughly washed and antibody was

added to the wells. After a 30 min incubation, supernatants were collected and 3H-dopamine was measured by scintillation counting. Values

were expressed as percentage of 3H-dopamine basal release. Statistical analysis performed by two-tailed t-test. (b) Acute Sydenham’s chorea

acute sera induced significantly more 3H-dopamine release than matched convalescent sera or pooled NHS. (c) Sydenham’s chorea mAb

24.3.1induced increased levels of tyorsine hydroxylase in vivo. Chorea mAb 24.3.1 or isotype control were passively transferred into

intracerebroventricular cannulated Lewis rats (Hilltop Lab Animals, Inc.) every day for five consecutive days. Brains were removed and

formalin fixed. Comparative levels of tyrosine hydroxylase were assessed by immunohistochemistry on whole brain cross-sections. The

sections were probed with a tyrosine hydroxylase-specific antibody, developed with Fast red substrate, and counterstained with hematoxylin.

mAb 24.3.1 induced higher levels of tyrosine hydroxylase than the isotype control. Elevated levels of tyrosine hydroxylase induced by chorea

mAb 24.3.1 were seen in cortical neurons, but not in cerebellar neruons (inset).

C. A. Kirvan et al.26
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PANDAS sera induced CaM kinase II activity in SK-

N-SH human neuroblastoma cells similar to that seen

in Sydenham’s chorea with significant increases in

CaM kinase II activity found for PANDAS sera during

acute disease, but not in convalescent sera. Depletion

of IgG from PANDAS serum abrogated CaM kinase

II activation in comparison to non-depleted serum.

PANDAS CSF was shown to increase neuronal cell

signaling and demonstrated differential staining of

human basal ganglia similar to Sydenham’s chorea.

Although group A streptococci induction of PANDAS

has not been clarified, the new data suggest that

antibody-mediated neuronal cell signaling may play

an influential role in the immunopathogenesis of

PANDAS.

Summary

Molecular mimicry between streptococcal antigens

and neurological determinants in Sydenham’s chorea

is incompletely understood. Although there are only a

limited number of studies on the mechanism of

antibody pathogenesis in Sydenham’s chorea, the

cross-reactivity between the GAC and brain derived

ganglioside appears to be important in the disease

process. While studies have not definitively identified

neuronal cell target antigen(s) in Sydenham’s chorea,

antibody-mediated signal transduction via CaM

kinase II and subsequent disruption of neurotrans-

mitter synthesis and release may be a potential

mechanism in the immunopathogenesis of Syden-

ham’s chorea and related disorders.
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